A drone is hovering at a constant height above the ground. The mass of the drone is 7 kg. The mass of the package is 3 kg. Calculate the upward force of the Drone.

To answer this Question we will use the equation derived from Newtons second law of motion,
F=ma or in this case W=mg as it is the mass of the object being accelerated by gracity, giving us it's weight
The acceleration downwards due to gravity at a rate of -9.81m/s-2 The mass is the combined mass of the two objects: 7 + 3 = 10 kg
The weight is therefore = W = mg = 10 x 9.81 = - 98.1
As the question state the drone is hovering, the upwards force must be in equilibrium with the weight, giving us a final answer
W + F = 0
-98.1 + F = 0
F = 98.1 N

FT
Answered by Finn T. Physics tutor

4169 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

A photon of wavelength 656.3nm is emitted in the Balmer series of a Hydrogen emission lamp. (a). Show that the frequency of the photon is 4.57*10^14 Hz. (b).Use the Planck-Einstein relationship to calculate the energy of the photon.


An exoplanet of mass 1.36x10^26 kg is orbiting a star of mass 3.2x10^31 kg at a distance of 1 AU. What is the magnitude of the gravitational force between the two?


A 25 micro farad is charged until the potential difference across it is 500V. Calculate the charge stored at this moment.


If a footballer kicks a ball straight down the pitch at 6 ms-1 at an angle θ of 30° above the horizontal, what is the maximum height reached by the ball?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning