integrate from 0 to 2: 2x*sqrt(x+2) dx

There are a few ways to go about this question. I will do a substitution using u=(x+2)1/2. From this equation we need to find x in terms of u, the new limits of the integral and dx in terms of du. By rearranging we see that x=u2-2. Also if we substitute the original limits into the equation u=(x+2)1/2, we have when x=0, u=21/2 and when x=2, u=4. Now by differentiating x=u2-2 with respect to u we get dx/du=2u so dx=2udu. Now we have all our information we can write the integral completely in terms of u as we are now integrating with respect to u. We have the integral from 21/2 to 2 of 2(u2-2)u2u du which simplifies to 4u4-8u2 du. Integrating that gives [4u5/5-8u3/3] from 21/2 to 2. Now substituting the limits in and simplifying gives the final answer: 32/15(2+21/2).

Answered by Tom W. Maths tutor

9781 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = exp(2x) * (x^2 +1)^(5/2), what is dy/dx when x is 0?


a) Find the indefinite integral of sec^2(3x) with respect to x. b) Using integration by parts, or otherwise, find the indefinite integral of x*sec^2(3x) with respect to x.


Find the sum of the first n odd numbers, 1+ 3 + … + 2n-1, in terms of n. What might a mathematician’s thought process be?


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences