The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.

Note the simplest relation to eliminate t is the fact cos2(t)+sin2(t)=1 for all t, so we need only find x and y in terms of cos(t) and sin(t).Note we have sin(t)=-(y+1) from the equation for y already.From the equation for x, x=cos(t)+1/2sin(2t). The key step is to use the double angle formulae to express sin(2t) in terms of sin(t) and cos(t). sin(2t)=2sin(t)*cos(t) gives x=cos(t)+sin(t)cos(t) = cos(t)(1+sin(t)). We recognise 1+sin(t)=-y and so x=-ycos(t) gives cos(t)=-(x/y).Then cos2(t)+sin2(t)=1 for all t => (-x/y)^2+(-y-1)^2=1 => x^2/y^2 = -y^2-2y => x^2=-(y^4+2y^3).
The volume of the pendant is calculated from the formulae π∫x^2 dy from y = 0 -> y = -2 (from sketch), calculated with above expression for x^2.

Related Further Mathematics A Level answers

All answers ▸

The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Find the general solution of the second order differential equation: y''+2y'-3 = 0


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


How to use the integrating factor?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences