The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.

Note the simplest relation to eliminate t is the fact cos2(t)+sin2(t)=1 for all t, so we need only find x and y in terms of cos(t) and sin(t).Note we have sin(t)=-(y+1) from the equation for y already.From the equation for x, x=cos(t)+1/2sin(2t). The key step is to use the double angle formulae to express sin(2t) in terms of sin(t) and cos(t). sin(2t)=2sin(t)*cos(t) gives x=cos(t)+sin(t)cos(t) = cos(t)(1+sin(t)). We recognise 1+sin(t)=-y and so x=-ycos(t) gives cos(t)=-(x/y).Then cos2(t)+sin2(t)=1 for all t => (-x/y)^2+(-y-1)^2=1 => x^2/y^2 = -y^2-2y => x^2=-(y^4+2y^3).
The volume of the pendant is calculated from the formulae π∫x^2 dy from y = 0 -> y = -2 (from sketch), calculated with above expression for x^2.

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?


How to determine the rank of a matrix?


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences