differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x

This question is on the trickier side as it is heavily computational and requires a good knowledge of the differentiation rules however it is a good way to practise using multiple rules at once.First we will use the quotient rule formula: dy/dx = [vdu-udv]/[v2]we will set: u = xcos(x3) and v = (x4+1)3by using the product and chain rule we can the calculate du = cos(x3) - 3x3sin(x3) and dv = 12x3(x4 + 1)2substituting these values into the quotient rule formula we get: dy/dx = { (x4 + 1)3[cos(x3) - 3x3sin(x3)] - 12x4cos(x3)(x4 + 1)2 }/{(x4 + 1)6}Finally, after simplifying we achieve: dy/dx = { cos(x3)(1 - 11x4) - 3x2sin(x3)(1 + x5) }/{(x4 + 1)4}

EW
Answered by Elizabeth W. Maths tutor

2427 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences