differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x

This question is on the trickier side as it is heavily computational and requires a good knowledge of the differentiation rules however it is a good way to practise using multiple rules at once.First we will use the quotient rule formula: dy/dx = [vdu-udv]/[v2]we will set: u = xcos(x3) and v = (x4+1)3by using the product and chain rule we can the calculate du = cos(x3) - 3x3sin(x3) and dv = 12x3(x4 + 1)2substituting these values into the quotient rule formula we get: dy/dx = { (x4 + 1)3[cos(x3) - 3x3sin(x3)] - 12x4cos(x3)(x4 + 1)2 }/{(x4 + 1)6}Finally, after simplifying we achieve: dy/dx = { cos(x3)(1 - 11x4) - 3x2sin(x3)(1 + x5) }/{(x4 + 1)4}

EW
Answered by Elizabeth W. Maths tutor

2338 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


A cricket player is capable of throwing a ball at velocity v. Neglecting air resistance, what angle from the horizontal should they throw at to achieve maximum distance before contact with the ground? How far is that distance?


How can do you factorize the equation x^2+6x+8


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences