Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication

We must show that the set satisfies the group requirements: Identity, Closure, Associativity and Invertibility.Identity: Contains identity matrixAssociativity: Follows from the rules of matrix multiplicationInvertibility: As none of the diagonal elements are non zero, if the reciprocal of each diagonal element is taken, the inverse can be obtainedClosure: Can show by example of multiplying two general matrices

Related Further Mathematics A Level answers

All answers ▸

How do I draw any graph my looking at its equation?


Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


MEI (OCR) M4 June 2006 Q3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences