Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication

We must show that the set satisfies the group requirements: Identity, Closure, Associativity and Invertibility.Identity: Contains identity matrixAssociativity: Follows from the rules of matrix multiplicationInvertibility: As none of the diagonal elements are non zero, if the reciprocal of each diagonal element is taken, the inverse can be obtainedClosure: Can show by example of multiplying two general matrices

Related Further Mathematics A Level answers

All answers ▸

Find all square roots of the number 3 + 4i.


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


What modules have you done before?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences