Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2

First express as a single logarithm as follows. The number in front of the logarithm remembering log rules can be rewritten as the power of the number in the bracketsSo rewriting the LHS
log3(x2) - log3(x+4)
log3(x2/(x+4))remember inverse log3 is to the power of 3so2 = log3(x2/(x+4)) 32= (x2/(x+4))expanding and solving x2-9x-36=0(x-12)(x+3)=0x=12 as cannot do a negative logarithm of a number

TS
Answered by Theranjit S. Maths tutor

8701 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x)=7xe^x, find f'(x)


How do I find the co-ordinates and nature of the stationary points on a curve?


How do you intergrate a function?


Given that x=ln(t) and y=4t^3,a) find an expression for dy/dx, b)and the value of t when d2y/dx2 =0.48. Give your answer to 2 decimal place.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning