Find the equation of the normal of the curve xy-x^2+xlog(y)=4 at the point (2,1) in the form ax+by+c=0

differentiating: xy'+y-2x+(x/y)y'+log(y)=0rearranging: y'=y(2x-y-log(y))/x(1+y)at (2,1): y'=3/4 so gradient of normal at (2,1) is -4/3so the equation of the normal is y-1=(-4/3)(x-2)which is equivalent to 4x+3y-11=0

Answered by Sam L. Maths tutor

2802 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0


What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?


I don't understand how to visualise differentiation, please could you show my an example to allow me to understand what it actually is better?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences