Integrate sinx*ln(cosx) with respect to x.

1. ʃ sinx*ln(cosx) dx

First notice the composition ln(cosx). To make the expression easier to integrate we try substitution (substitution is often useful when trying to integrate expressions that are or include compositions of functions).

2. So we let t=cosx.

Now we must find out what dx is in terms of dt. This is quite simple by just differentiating the substitution.

3. dt/dx=-sinx <=> dx=(-1/sinx)dt

Now we substitute everything into our integral from 1.

4. ʃ sinxln(t)(-1/sinx) dt

The sinx from the top and bottom cancel.

5. ʃ -1*ln(t) dt

I have written a -1 since we will have to use integration by parts to integrate ln(t) with respect to t. (Reminder: ʃ u(dv/dx) dx = uv - ʃ v(du/dx) dx)

6. Let u=ln(t) and dv/dt=-1

Now we need to differentiate u to find du/dt and integrate dv/dt to find t.

7. du/dt=1/t and v=-t

Use the intergation by parts formula and that uv=-tln(t) and v(du/dt)=-t(1/t)=-1.

8. ʃ -1*ln(t) dt = -tln(t) - ʃ -1 dt = -tln(t)+t+C

! Remember the constant of integration and that  because we used a substitution we must give our answer back in terms of x.

9. So using 2. again we get cosx(1-ln(cosx))+C as the answer.

DS
Answered by Darshan S. Maths tutor

17591 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A general function f(x) has the property f(-x)=-f(x). State a trigonometric function with this property and explain using the Maclaurin series expansion for this function why this property holds. Write down the integral in the limits -q to q of f(x) wrt x


Prove n^3 - n is a multiple of 3


Use integration by parts to find ∫ (x^2)sin(x) dx. (A good example of having to use the by parts formula twice.)


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning