Given the curve y=x^2 +1 and the line y=k, find, using graphical methods only, the value of k for which there is exactly one solution.

Graphically, the solution of a pair of simultaneous equations is the point of intersection between both curves. If we want only one solution to the system of equations, then there should only be one point of intersection between both lines. By drawing the graphs, we can see that y=k is a horizontal line, and y=x2+1 is a parabola with vertex at (0,1). Therefore, the only value of k for which a horizontal line crosses the parabola only once is y=k=1.

Answered by Marcos T. Maths tutor

2167 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a


How to differentiate a function?


Write x^2+6x+14 in the form of (x+a)^2+b where a and b are constants to be determined.


Solve the equation 4x + 2 = -5x + 20


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences