A bag contains 5 red beads and 7 blue beads. Two beads are removed at random without replacement. Workout the probability that the two beads are the same colour.

This question is most simply solved with a probability tree diagram, where you just follow the paths of picking two same coloured beads. The first branch would be picking two red beads. P(R1) = 5 / 12, and P(R2) = 4 / 11, as the red bead would have been removed. The second branch would be picking two blue beads, where P(B1) = 7 / 12 and P(B2) = 6 / 11 for the same reason.
Our total probability is then (R1 x R2) + (B1 x B2) = (5 / 12 x 4 / 11) + (7 / 12 x 6 / 11) = 31 / 66

Answered by Will M. Maths tutor

9002 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Three positive whole numbers have a mean of 6. What is the greatest possible range of the three numbers?


What is the point of bearings?


Solve the following equation. (x)^2-8x+15=0


Solve the simultaneous equations 4x – 3y = 11 10x + 2y = −1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences