A bag contains 5 red beads and 7 blue beads. Two beads are removed at random without replacement. Workout the probability that the two beads are the same colour.

This question is most simply solved with a probability tree diagram, where you just follow the paths of picking two same coloured beads. The first branch would be picking two red beads. P(R1) = 5 / 12, and P(R2) = 4 / 11, as the red bead would have been removed. The second branch would be picking two blue beads, where P(B1) = 7 / 12 and P(B2) = 6 / 11 for the same reason.
Our total probability is then (R1 x R2) + (B1 x B2) = (5 / 12 x 4 / 11) + (7 / 12 x 6 / 11) = 31 / 66

Answered by Will M. Maths tutor

9941 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would you solve a quadratic equation (e.g. x^2-8x+15=0)?


Simplify. (x(^2)+4x)/(x(^2)+3x-4)


A 4 pint bottle of milk costs £1.18 A 6 pint bottle of milk costs £1.74 Which bottle of milk is the best value for money? You must show all your working.


If f(x)=7-4x, given that f(c)=9, find c


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences