Make x the subject of the following formula: 5(3x -2y) = 14 - 2ax

(1) 5(3x - 2y) = 14 -2ax 15x - 10y = 14 - 2ax (2) 15x +2ax -10y = 14 15x + 2ax = 10y + 14
(3) x(15 + 2a) = 10y + 14 x = (10y + 14) / (15 + 2a)
To asking us to make x the subject of a formula, the question really just wants us to write an equivalent of the same formula but in the format :
'x = ...'
In step (1) we are simply expanding all of the brackets to give ourselves the clearest, most simplified view of all of the different variables and constants.
In step (2) we now start to separate the different variables, as we are trying to put everything in terms of x. This involves adding/ subtracting from both sides (so everything is still even) until we have all of the x variables on the left hand side, and everything else on the right hand side.
In step (3) we are now looking to do almost the reverse of step (1) by finding the common multiple between all of the components on the left hand side of the equals sign. Since everything on that side is a multiple of x, we can bring the x outside of the brackets, finally isolating the variable we need. To get the x by itself, we then divide both sides by the contents of the brackets, giving us our answer.

TW
Answered by Thomas W. Maths tutor

4029 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3,4). The Point Q has the coordinates (a,b). A line perpendicular to PQ is given by the equation 3x+2y=7. Find an expression for b in terms of a.


Express x^2+8x+15 in the form (x+a)^2-b


Could you please go through an example question where you have to solve quadratic simultaneous equations?


Solve the simultaneous equations: 5x + y = 21 and x - 3y = 9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning