Differentiate (3x^2-5x)/(4x^3+2x^2)

We can differentiate the expression using the quotient rule. If f(x)=u(x)/v(x) then f'(x)=(u'(x)v(x)-u(x)v'(x))/v(x)^2. In this case u(x)=3x^2-5x so u'(x)=6x-5 and v(x)=4x^3+2x^2 so v'(x)= 12x^2+4x. Using the quotient rule the full derivative is: (6x-5)(4x^3+2x^2)-(3x^2-5x)(12x^2+4x)/(4x^3+2x^2)^2

AI
Answered by Andras Ivan A. Maths tutor

4697 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you show that (x+2) is a factor of f(x) = x^3 - 19x - 30, and then factorise f(x) completely?


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


How do you find the roots of a cubic equation?


Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning