Differentiate (3x^2-5x)/(4x^3+2x^2)

We can differentiate the expression using the quotient rule. If f(x)=u(x)/v(x) then f'(x)=(u'(x)v(x)-u(x)v'(x))/v(x)^2. In this case u(x)=3x^2-5x so u'(x)=6x-5 and v(x)=4x^3+2x^2 so v'(x)= 12x^2+4x. Using the quotient rule the full derivative is: (6x-5)(4x^3+2x^2)-(3x^2-5x)(12x^2+4x)/(4x^3+2x^2)^2

Answered by Andras Ivan A. Maths tutor

3978 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find f'(x) and f''(x) when f(x) = 3x^2 +7x - 3


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).


Why does the product rule for differentiating functions work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences