Find the finite area enclosed between the curves y=x^2-5x+6 and y=4-x^2

Starting by factorising the curve equations: the first one factorises to y = (x-3)(x-2) and the second one becomes y=(2-x)(2+x). From this, a rough sketch of the curves can be drawn and it can be seen that for the area in question, y=4-x2 is always above the other curve. This will become important for the integration step. The next step is to find the points where the two curves intersect (we only care about the x-coordinate here). Equating the two curves gives x2-5x+6=4-x2 which can be rearranged and factorised to get (2x-1)(x-2)=0, so the required coordinates are x = 1/2 and x=2.By looking at the rough sketch, we can see that we want to subtract the area below y=x2-5x+6 from the area below y=4-x2 between x = 0.5 and x=2. To do this, we compute integral from 0.5 to 2 of 4-x2-(x2-5x+6) to get the integral from 0.5 to 2 of -2x2+5x-2, which is [-2x3/3 + 5x2/2 - 2x] from 0.5 to 2. Substituting in 0.5 and 2 gives 9/8 (which is 1.125).

Answered by Ruby N. Maths tutor

3194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points on the curve with the equation y=x^4-12x^2


Solve, correct to 2 decimal places, the equation cot(2x)=3 for 0°<x<180°


Derive Law of Cosines using Pythagorean Theorem


Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences