Find the gradient of the straight line with equation 4x+3y=12

To answer the question the equation given must be rearranged into the straight line formula, y=mx+c, where m is the gradient of the slopeminus 4x from both sides, we now have 3y=12-4xthen divide through by 3, so we now have y=4-4/3xand now rearrange into form y=mx+c, so we have y=-4/3x+12now the gradient can clearly been seen as -4/3

Answered by Constance N. Maths tutor

8231 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

PQR is a triangle with vertices P (−2, 4), Q(4, 0) and R (3, 6). Find the equation of the median through R.


How do you solve integrals which are the result of a chain rule e.g. the integral of sin(2x+1)


Work out the angle between the two tangents of the curve y = sin(x) at y = 0 and y = 1


Calculate the rate of change of d(t )=2/(3t), t ≠ 0, when t=6.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences