Find the gradient of the straight line with equation 4x+3y=12

To answer the question the equation given must be rearranged into the straight line formula, y=mx+c, where m is the gradient of the slopeminus 4x from both sides, we now have 3y=12-4xthen divide through by 3, so we now have y=4-4/3xand now rearrange into form y=mx+c, so we have y=-4/3x+12now the gradient can clearly been seen as -4/3

CN
Answered by Constance N. Maths tutor

9214 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

A triangle has vertices A(-3,5), B(7,9) and C(2,11). What is the equation of the median that passes through the vertex C?


Integrate lnx with respect to x


a) Factorise: 2x^2-72, and hence b) find the y-intercept of the line with the equation: y=(2x^2-72)/(4x-24)


Differentiate (with respect to x), y=2x^2+8x+5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning