Simplify (3x^2 + x -2)/(x^2 - 1)

First notice that no simplifications can be made to the problem without changing the form. We start by factorising the numerator. The highest power of x in this question is 2, therefore we know that it has to be a quadratic. The general form of a quadratic is Ax2+Bx+C. We need to find 2 factors of -2 that add up to 1 when one of the factors is multiplied by 3 (as A = 3). The possible factors are -1 and 2 or -2 and 1. Start with -1 and 2. The two possibilities are: 1) (3x - 1)(x + 2)- the sum of the coefficients of x is 5. 2) (3x + 2)(x - 1) - the sum of the coefficients of x is -1Then try -2 and 1. The two possibilities are: 1) (3x + 1)(x - 2) - the sum of the coefficients of x is -5. 2) (3x - 2)(x + 1) - the sum of the coefficients of x is 1.Therefore the factorised form is (3x - 2)(x + 1).The denominator can then be simplified very easily by noticing that x2 -1 is in the form a2-b2. We know that a2-b2 = (a+b)(a-b). Applying this to the denominator gives (x+1)(x-1). To simplify (3x2 + x -2)/(x2 - 1) we rewrite it in the form [(3x - 2)(x + 1)/(x + 1)(x - 1)] and cancel x + 1 giving the simplified form as (3x - 2)/(x - 1).

Answered by Arjun A. Maths tutor

3394 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simultaneous questions: 2x+y=7, 3x-y=8


How do you work out the mean of a set of numbers?


What is Pythagoras's theorem?


How to draw two linear lines and find where they cross without using the graph.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences