How do you find the stationary points of the curve with equation y=4x^3-12x+1

The stationary points are located where the gradient of the function is equal to 0. The first derivative of the function describes the gradient so we must differentiate the function to find dy/dx.
Using differentiation rules, we find that dy/dx = 12x^2 - 12.
Now we must set the derivative to zero and solve for x:
dy/dx = 12x^2-12 = 0 12(x^2-1) = 012(x-1)(x+1) = 0
This has solutions x=1 and x=-1. Therefore the curve has 2 stationary points; one with x-coordinate 1 and one with x coordinate -1.
To find the corresponding y-coordinates we substitute these x values into the equation of the curve y=4x^3-12x+1.
When x=1, y = 4*(1)^3 - 121+1 = 4 - 12 +1 = -7.
When x=-1, y = 4
(-1)^3 - 12*(-1) + 1 = -4 + 12 + 1 = 9.
Hence the stationary points of the curve with the equation y=4x^3-12x+1 are (1, -7) and (-1, 9).

PL
Answered by Polly L. Maths tutor

7742 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C is mapped by the equation ( 1+x)(4-x). The curve intersects the x-axis at x = –1 and x = 4. A region R is bounded by C and the x-axis. Use calculus to find the exact area of R.


The curve C has equation: 2(x^2)y + 2x + 4y – cos(pi*y) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


Show how '2sin(x)+sec(x+ π/6)=0' can be expressed as √3sin(x)cos(x)+cos^2(x)=0.


How to differentiate using the Product Rule


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences