How do you find the stationary points of the curve with equation y=4x^3-12x+1

The stationary points are located where the gradient of the function is equal to 0. The first derivative of the function describes the gradient so we must differentiate the function to find dy/dx.
Using differentiation rules, we find that dy/dx = 12x^2 - 12.
Now we must set the derivative to zero and solve for x:
dy/dx = 12x^2-12 = 0 12(x^2-1) = 012(x-1)(x+1) = 0
This has solutions x=1 and x=-1. Therefore the curve has 2 stationary points; one with x-coordinate 1 and one with x coordinate -1.
To find the corresponding y-coordinates we substitute these x values into the equation of the curve y=4x^3-12x+1.
When x=1, y = 4*(1)^3 - 121+1 = 4 - 12 +1 = -7.
When x=-1, y = 4
(-1)^3 - 12*(-1) + 1 = -4 + 12 + 1 = 9.
Hence the stationary points of the curve with the equation y=4x^3-12x+1 are (1, -7) and (-1, 9).

Answered by Polly L. Maths tutor

7321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The normal to the curve C when x=1 intersects the curve at point P. If C is given by f(x)=2x^2+5x-3, find the coordinates of P


Find the stationary point of the curve y=3x^2-2x+2 and state the nature of this stationary point.


Find the x coordinate of the minimum point of the curve y = e3x - 6e2x + 32.


For sketching the graph of the modulus of f(x) (in graph transformations), why do we reflect in the x-axis anything that is below it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences