How do you find the stationary points of the curve with equation y=4x^3-12x+1

The stationary points are located where the gradient of the function is equal to 0. The first derivative of the function describes the gradient so we must differentiate the function to find dy/dx.
Using differentiation rules, we find that dy/dx = 12x^2 - 12.
Now we must set the derivative to zero and solve for x:
dy/dx = 12x^2-12 = 0 12(x^2-1) = 012(x-1)(x+1) = 0
This has solutions x=1 and x=-1. Therefore the curve has 2 stationary points; one with x-coordinate 1 and one with x coordinate -1.
To find the corresponding y-coordinates we substitute these x values into the equation of the curve y=4x^3-12x+1.
When x=1, y = 4*(1)^3 - 121+1 = 4 - 12 +1 = -7.
When x=-1, y = 4
(-1)^3 - 12*(-1) + 1 = -4 + 12 + 1 = 9.
Hence the stationary points of the curve with the equation y=4x^3-12x+1 are (1, -7) and (-1, 9).

Answered by Polly L. Maths tutor

6945 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


Express 3sinx - 2cosx in the form R(sin(x-a) given R>0 and 0<a<90°. Hence solve 3sinx - 2cosx = 1 in the interval 0<x<360°. What are the maximum and minimum values of 2sinx - 3cosx?


What is the natural logarithm?


C2 differentiate 2x^2 -3x +4 with respect to X


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences