How do you find the stationary points of the curve with equation y=4x^3-12x+1

The stationary points are located where the gradient of the function is equal to 0. The first derivative of the function describes the gradient so we must differentiate the function to find dy/dx.
Using differentiation rules, we find that dy/dx = 12x^2 - 12.
Now we must set the derivative to zero and solve for x:
dy/dx = 12x^2-12 = 0 12(x^2-1) = 012(x-1)(x+1) = 0
This has solutions x=1 and x=-1. Therefore the curve has 2 stationary points; one with x-coordinate 1 and one with x coordinate -1.
To find the corresponding y-coordinates we substitute these x values into the equation of the curve y=4x^3-12x+1.
When x=1, y = 4*(1)^3 - 121+1 = 4 - 12 +1 = -7.
When x=-1, y = 4
(-1)^3 - 12*(-1) + 1 = -4 + 12 + 1 = 9.
Hence the stationary points of the curve with the equation y=4x^3-12x+1 are (1, -7) and (-1, 9).

Answered by Polly L. Maths tutor

7464 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.


Differentiate y=ln(ln(x)) with respect to x.


If f(x) = x^2 - 3x + 2, find f'(x) and f''(x)


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences