Prove that the square of an odd number is always 1 more than a multiple of 4. [Edexcel Higher Tier 2018, Paper 1: Question 12]

We want to start with “the square of an odd number” and show something. Remember that any odd number can be expressed as 2n+1 (an even number is 2n, and any odd number is 1 larger than an even). So squaring an odd number gives us (2n+1)2.Let’s see if we can evaluate this algebraically to get what the question asks for. Firstly we need to expand the brackets:(2n+1)2 = (2n)2 + 2(2n)(1) + 12            [by hairpin/FOIL method or the trick for squaring brackets] = 4n2 + 4n + 1Now notice the factor of 4 in two of the terms; we can factorise! = 4(n2+n) + 1which is something times 4, plus 1; i.e. “1 more than a multiple of 4”. This is the proof the question required, and is general for any odd number 2n+1.

RH
Answered by Robert H. Maths tutor

2898 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove algebraically that 0.256565656... can be written as 127/495


Issy goes to buy some fruit. She has been told by one friend that 2 apples and 3 bananas costs £3.80. She has been told by another friend that 5 apples and a banana costs £3.65. what are the individual costs of an apple and a banana?


How to solve the following simultaneous equations? Equation 1: 3x+y=10 Equation 2: 2x-y=5


Solve the simultaneous equations y = x^2 +3x and y = x+8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning