(A-level but box won't let me change it from GCSE) A particle of charge q and initial speed v is stopped by a potential difference V in distance d and time t. What was its initial momentum?

Define p=momentum, E=electric field.Firstly we know that:1) ∆p/∆t = F - definition of momentum2) F = Eq - force on particle in an electric field caused by a voltage3) E = V/d - definition of electric field of voltage V over distance dEquate F equations (1 and 2) because the force on the particle from the electric field is causing the change in momentum of the particle: 4) ∆p/∆t = EqSubstitute in E equation (3 ) to this new equation (4) so that we remove E as it is not a given quantity in the question, so we don't want it in the answer we give for initial momentum: ∆p/∆t = (Vq/d)We want initial momentum. ∆p is the change in momentum from the particle traveling at speed v to being stopped. Since when still (stopped) the particles momentum will be zero, the change in momentum (∆p) actually gives the initial momentum (p) so we can substitute in ∆p = p. Since ∆t over this event is from t=0 to t=t, we can do the same for tp/t = (Vq/d)Finally, re-arrange to get p, initial momentump = (Vqt)/d

Answered by Greta T. Physics tutor

1996 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

When a force is applied to a spring, the spring extends by 12cm. The spring has a spring constant of 25 N/m. Calculate the force applied to the string in N.


A force is applied to a box of mass 2kg so that is accelerates at 2ms^-2. Find the force acting on the box and thus calculate the work done in moving the box 10m in the direction of the force.


what causes an object in friction with a surface to become negatively charged?


Explain the input and output energy sources for a car engine. How would you calculate the efficiency? Explain in terms of the inputs and outputs how the efficiency could be improved.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences