Integrate (x+3)/(x(x-3)) with respect to x

The easiest way to solve this is to split the fraction into partials.Using partial fractions, we get A/(x-3)+B/x=x+3/(x(x-3)) implies Ax+B(x-3)=x+3We want to find the values of A and B that solve this, so we want to eliminate A and solve for B, then eliminate B and solve for A.Setting x=0 eliminates A, so B(-3)=3 implies that B=-1Setting x=3 eliminates B, so 3A = 6 implies A=2Thus we have 2/(x-3)-1/xWe can integrate this fine now.The integral of 2/(x-3) is going to be 2ln|x-3|, as the numerator 2 times the derivative of the denominator. Likewise, -1/x integrates to -ln|x|. So the integral is 2ln|x-3|-ln|x|+c

RS
Answered by Robin S. Maths tutor

3219 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate x* (exp(x))??


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


How do I differentiate 4x^3 + 2x + x^4 with respect to x?


Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning