Integrate (x+3)/(x(x-3)) with respect to x

The easiest way to solve this is to split the fraction into partials.Using partial fractions, we get A/(x-3)+B/x=x+3/(x(x-3)) implies Ax+B(x-3)=x+3We want to find the values of A and B that solve this, so we want to eliminate A and solve for B, then eliminate B and solve for A.Setting x=0 eliminates A, so B(-3)=3 implies that B=-1Setting x=3 eliminates B, so 3A = 6 implies A=2Thus we have 2/(x-3)-1/xWe can integrate this fine now.The integral of 2/(x-3) is going to be 2ln|x-3|, as the numerator 2 times the derivative of the denominator. Likewise, -1/x integrates to -ln|x|. So the integral is 2ln|x-3|-ln|x|+c

Answered by Robin S. Maths tutor

2804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


Why does inverse sin,cos or tan of numbers have multiple answers


Two lines have equations r_1=(1,-1,2)+a(-1,3,4) and r_2=(c,-4,0)+b(0,3,2). If the lines intersect find c:


How do i solve differential equations?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences