Find max point of y=-x^2-5x-10

Can either differentiate or using the completing the square method. Differentiation not covered at GCSE so completing the square should be done to get -((x+5/2)2+15/4). To find the max point we need to find the minimum value of (x+5/2)2. This is 0 (due to square) which occurs when x=-5/2 in which case y=-15/4. This can easily be done by equating the x value to the negative of the value within the inner bracket and y value to the value in the outer bracket.

GR
Answered by Gautham R. Maths tutor

3462 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise the quadratic equation: x^2 + 5x + 6 = 0 and hence find the two solutions to the equation.


How do I revise for my Maths GCSE exam?


Prove algebraically that (2n + 1) to the power of 2 - (2n-1) is an even number


Edexcel, 2016, Foundation Maths GCSE: A running club has 50 members. 30 members take part in road races, 15 members take part in fell races, 12 members do not run in road or fell races. How many members run both fell and road races?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning