Find max point of y=-x^2-5x-10

Can either differentiate or using the completing the square method. Differentiation not covered at GCSE so completing the square should be done to get -((x+5/2)2+15/4). To find the max point we need to find the minimum value of (x+5/2)2. This is 0 (due to square) which occurs when x=-5/2 in which case y=-15/4. This can easily be done by equating the x value to the negative of the value within the inner bracket and y value to the value in the outer bracket.

GR
Answered by Gautham R. Maths tutor

3043 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A linear equation has terms: a+2b, a + 6b, a + 10b, ......., ........ the second term equals 8 and the fifth term equals 44. Work out the value of a & b


Solve the simultaneous equations 3x + y = -4 and 3x - 4y = 6


Find the two solutions to the quadratic equation x^2-9x+18


Solve 5x – 2 > 3x + 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences