Prove that the sum of squares of the first n natural numbers is n/6(n+1)(2n+1)

In order to do this we must follow the standard procedure for a proof by induction which is to first check a base case:Let n = 1, then the sum can be written as 12 = 1/6(1+1)(2+1) = 1 as required.
Next, assume through this check that the assumption holds for some n = k. (Where the assumption is that the sum of squared natural numbers up to n is equal to n/6(n+1)(2n+1)).
Finally, let n = k + 1 and try to show the assumption is still valid. By showing this is the case for an arbitrary n = k we can see that it will hold for all n in the natural numbers:Would show this on the whiteboard as it is a lot of numbers to type, but it works.

TD
Answered by Tutor156882 D. Further Mathematics tutor

5762 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I integrate (sin x)^6?


Given that z = a + bj, find Re(z/z*) and Im(z/z*).


How do you show that the centre of a group is a subgroup


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning