Solve x^2=4(x-3)^2

Start by look at the right hand side of the equation, first expand (x-3)2 which is also the same as (x-3)(x-3). This comes out to equal (x2-6x+9). Next multiply (x2 -6x+9) by 4 which was left outside of the bracket before it was expanded. This comes out to equal (4x2-24x+36).Now you are left with (x2=4x2-24x+36), minus the (x2) from the left hand side (to group all of the x values onto one side of the equation) to get (0=3x2-24x+36), divide through by 3 (due to 3 being a common factor through the equation) to simplify the equation. Next factorise the quadratic equation, which comes to being (x-2)(x-6)=0. Therefore the solutions of the equations are x=2 and x=6. To prove the solutions are correct, substitute each of the values separately and for the solution to be correct it should end up 0=0.

Answered by Louis R. Maths tutor

3599 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A rectangle has a shorter side with a length of x and a longer side with a length of x + 8, the perimeter of the rectangle is 80cm. Calculate the value of x.


Adam gets a bonus of 30% of £80. Katy gets a bonus of £28. Work out the difference between the bonus Adam gets and the bonus Katy gets.


The mean of 5 numbers is 42. The 5 numbers are 45,29,63,42 and X. Find the value of X.


A rectangle has an area of 20 cm2. Its length and width are enlarged by scale factor 3. Find the area of the enlarged rectangle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences