Find the turning point of the curve whose equation is y = (x-3)^2 + 6.

The turning point can be found by using the concept of transformations. Firstly, it is important to form a relation between the values of a and b in an equation of the following form y = (x+a)^2 + b and the turning point of such an equation. Using the understanding of this relationship it becomes easy to deduce the turning point of any curve in this form.
Plotting a curve of y = x^2 shows the turning point to be (0,0). Next, plot the curve of y = (x+1)^2 by inputting values of x to find the corresponding y values. Try this again with y = (x+1)^2 + 1. Note the turning points for all these curves with different values for a and b. While experimenting with values for a and b, it should eventually become clear that for a curve of y = (x+a)^2 + b the turning point lies at (-a,b) and therefore for this equation the turning point is (3,-6).

Answered by Sai V. Maths tutor

3413 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you find the volume of a conical frustum?


A ladder of length 6.5m is leaning against a vertical wall. The foot of the ladder is 1.5m from the wall. Calculate the distance the ladder reaches up the wall to 3 significant figures.


There are N counters in a bag, 4 being red and the rest being blue. I take two counters at random from the bag (without replacing the first).The chance i take two blue counters is 1/3, See below in the answer box


How do you solve the simultaneous equations x^2+y=1 and -x+y=-1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences