Find the turning point of the curve whose equation is y = (x-3)^2 + 6.

The turning point can be found by using the concept of transformations. Firstly, it is important to form a relation between the values of a and b in an equation of the following form y = (x+a)^2 + b and the turning point of such an equation. Using the understanding of this relationship it becomes easy to deduce the turning point of any curve in this form.
Plotting a curve of y = x^2 shows the turning point to be (0,0). Next, plot the curve of y = (x+1)^2 by inputting values of x to find the corresponding y values. Try this again with y = (x+1)^2 + 1. Note the turning points for all these curves with different values for a and b. While experimenting with values for a and b, it should eventually become clear that for a curve of y = (x+a)^2 + b the turning point lies at (-a,b) and therefore for this equation the turning point is (3,-6).

SV
Answered by Sai V. Maths tutor

4042 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are only red , blue and purple counters in a bag. The ratio of the number of red counters to the number of blue counters is 3 : 17. If a counter is taken randomly the probability that it is purple is 0.2 Work out the probability for it to be red.


f(x) = (2x+3)/(x-4). Work out f^-1 (x)


Factorise x^2 + 7x + 10


Find x when: (2^x)(e^(3x+1))=10. Give your answer in the form (a + ln(b)) / (c + ln(d)) , where a,b,c,d are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences