Given that xy=2 and y=3x+5, find x and y. Do not use trial and improvement.

There are a few ways of solving these simultaneous equations, but most of them involve substitution. Perhaps the most intuitive substitution to make is the second equation (y=3x+5) into the first one (xy=2), giving x (3x+5) = 2Expanding and bringing all terms to one side, we obtain a quadratic equation:3x2 +5x = 23x2 +5x -2 =0.We notice that we can factorise this quadratic to solve it (alternatively, we could use the quadratic formula or complete the square)(3x-1) (x+2) =0So we have that either x = 1/3, or x= -2.We now consider what y must be when x= 1/3. From the first equation (xy=2), we are looking for y such that y/3=2, so y=6.Now consider what y must be when x=-2. Similarly, we look for y such that -2y=2, so y=-1.Therefore the set of solutions is:x=-2, y=-1and x= 1/3, y=6.

JP
Answered by James P. Further Mathematics tutor

4883 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.


Factorise the following quadratic x^2 - 8 + 16


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning