Find the stationary points of y=x^3 + 3x^2 - 9x - 4

The stationary points of the function are the points at which the gradient is equal to 0. (If you draw out a standard y=x^3 graph, you can see the gradient is 0 at the points where the graph changes direction)1) Differentiate the expression to find the gradient2) Set this differential equation to equal 0, as this will give you the points at which the gradient is equal to 03) Find the roots of the equation by factorizing4) Substitute each of the roots found in place of 'x' in to the original equation for the graph, to find the corresponding y values.

Related Further Mathematics GCSE answers

All answers ▸

How to solve the inequality 1 - 2(x - 3) > 4x


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


How can a system of two linear equations be solved?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences