One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?

The nucleus of the atoms are usually in excited states after performing a beta decay. By emitting a photon, the nucleus recover stability. The emitted photon has the same energy as the excess energy of the excited nucleus. To calculate the frequency we need to use Planck's relation E=hf (where h is Planck's constant). To calculate the wavelength we realize the photon can behave like a wave travelling at speed of light, so we can use c=fλ. The results are found by f=E/h=3.63x10^20 and λ=c/f=8.27x10^(-13) . Note that we need to use SI units so we need to transform the energy from Mev to J.

Answered by Marcos S. Physics tutor

3029 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is damping in Simple Harmonic Motion?


Why is the classical model of light insufficient in explaining the photoelectric effect?


How do you use a Variable Resistor to determine values to show the relationship between I and V?


Calculate the root mean squared speed for 16g of oxygen gas at 50(deg Celsius) and explain why we use this instead of the average velocity of all the particles.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences