One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?

The nucleus of the atoms are usually in excited states after performing a beta decay. By emitting a photon, the nucleus recover stability. The emitted photon has the same energy as the excess energy of the excited nucleus. To calculate the frequency we need to use Planck's relation E=hf (where h is Planck's constant). To calculate the wavelength we realize the photon can behave like a wave travelling at speed of light, so we can use c=fλ. The results are found by f=E/h=3.63x10^20 and λ=c/f=8.27x10^(-13) . Note that we need to use SI units so we need to transform the energy from Mev to J.

MS
Answered by Marcos S. Physics tutor

3466 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An electron is accelerated through a uniform electric field of strength, E= 20 [N/C]. Determine the speed after the the electron travels 0.5 m from rest.


How can the average speedx of a gas molecule be derived?


There is a point between the Moon and the Earth where the gravitational attractions are equal and opposite. How much further is this point from the Earth than the Moon


Calculate the threshold frequency for a metal with a work function of 3eV


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning