One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?

The nucleus of the atoms are usually in excited states after performing a beta decay. By emitting a photon, the nucleus recover stability. The emitted photon has the same energy as the excess energy of the excited nucleus. To calculate the frequency we need to use Planck's relation E=hf (where h is Planck's constant). To calculate the wavelength we realize the photon can behave like a wave travelling at speed of light, so we can use c=fλ. The results are found by f=E/h=3.63x10^20 and λ=c/f=8.27x10^(-13) . Note that we need to use SI units so we need to transform the energy from Mev to J.

Answered by Marcos S. Physics tutor

2575 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How can an object be accelerating if it does not change in speed?


A car travelling at 28 m/s brakes until it stops completely after travelling a distance of 15 m. Calculate the deceleration of the car.


Derive the formula for the maximum kinetic energy of an electron emitted from a metal with work function energy p , that is illuminated by light of frequency f.


What is meant by the binding energy of a nucleus?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences