One of the decays of potassium (A=40, Z=19) results in an excited argon atom with excess energy of 1.50 Mev. In order to be stable, it emits a gamma photon. What frequency and wavelength has this gamma photon?

The nucleus of the atoms are usually in excited states after performing a beta decay. By emitting a photon, the nucleus recover stability. The emitted photon has the same energy as the excess energy of the excited nucleus. To calculate the frequency we need to use Planck's relation E=hf (where h is Planck's constant). To calculate the wavelength we realize the photon can behave like a wave travelling at speed of light, so we can use c=fλ. The results are found by f=E/h=3.63x10^20 and λ=c/f=8.27x10^(-13) . Note that we need to use SI units so we need to transform the energy from Mev to J.

Answered by Marcos S. Physics tutor

2981 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A child is standing on a walkway that is moving at 2 metres per second and decides to turn around and walk back to the start at 2 metres per second. Explain why the child cannot reach the start of the walkway at this speed.


Find the angle at which total internal refraction takes place when light is going from glass to air.


Explain the workings of a mass spectrometer


A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences