Use logarithms to solve 9^x=15

According to the rules of logarithms, when you take a log of something to the power of something, you multiply the log of the base by the power, so in this case, taking logs of both sides would give us

xlog9=log15

log9 is a number so we can divide both sides to give us

x=log15/log9=1.23 to 3sf

Answered by Molly B. Maths tutor

6380 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the location and nature of the turning point of the line y=-x^2+3x+2


Find the derivative of x(x+3)^5


solve the equation 2cos x=3tan x, for 0°<x<360°


Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences