Given that y=(sin4x)(sec3x), use the product rule to find dy/dx

First, recall the Product rule: f(x)=g(x)*h(x), f'(x)=h(x)*g'(x)+h'(x)*g(x)This reveals the next step, to find the derivatives of our two subsidiary functions(g and h) d/dx * (sin4x) = 4cos(4x) , and d/dx (sec3x)= 3sec(3x)tan(3x) , this one comes from the list of trigonometric identities Now the answer is simple to find by plugging in the values which we have found to our equation. dy/dx= sec3x4cos4x+3sec(3x)tan(3x)*sin4xThis is the answer as required.

Answered by Edward F. Maths tutor

3419 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 4x + 1/(x^2) find dy/dx.


Differentiate with respect to x and write in its simpliest form, Y=(2x-3)/x^2?


A curve has the equation y=sin(x)cos(x), find the gradient of this curve when x = pi. (4 marks)


How do I find the turning points of a curve?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences