Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.

The first step is to find the y coordinate at the point on the curve where x = e. To do this we subsitute x = e into the equation of the curve, so y = 2ln(2e - x) becomes y = 2ln(2e - e). Simplifying this, we get y = 2ln(e). Using our knowledge of the natural logarithm, ln(e) = 1, so therefore y = 2.

Next, we find the gradient of the curve at the point x = e. We do this by differentiating the equation, and then subsituting the value for x in. Note that we have to use the chain rule.

dy/dx =  -2/(2e - x) = -2/(2e - e) = -2/e.

Using all the information we've found, we can now produce the equation of the tangent line using the equation of a line formula, y - y= m(x - x0), where m is the gradient.

y - 2 = -2/e (x - e). Rearranging this, we get y = 4 - 2x/e as the equation of the tangent line.

Answered by Rhiannon T. Maths tutor

9248 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x*ln(x)


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


For a curve of equation 2ye^-3x -x = 4, find dy/dx


How to plot quadratic functions, e.g. F(x)= x^2 + 2x +1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences