Given a graph of the displacement of a particle, how can you tell if it is in Simple Harmonic Motion?

There are two main features if an object is in SHM. The first is that it has a fixed maximum amplitude. That is to say, if the mean (halfway between the maximum values of oscillation (+ve and -ve)) displacement is taken as 0, then the maximum values of amplitude are both A and -A. So the total maximum displacement from the average position is always A. The second main feature is that the acceleration the particle undergoes is always proportional to the displacement from the mean/equilibrium position. This is an important criteria, as it limits the forms of motion that the particle can have. From looking at the basic equation of a SHM, x = Asin(ωt + φ) where x is the displacement of the particle, A is the amplitude (or maximum value of the displacement), ω is the angular frequency, and φ is for any phase offset. Therefore, the velocity for any given displacement is dx/dt = ωAcos(ωt + φ) And the acceleration is d2x/dt2 = - ω2Asin(ωt + φ) which can also be expressed as a = - ω2x which satisfies that the acceleration, a, must be proportional to x. And so, from this, it is obvious that a particle undergoing SHM must be sinusoidal on a displacement-time graph, in order for it to meet both criteria for being in SHM. If you are able to draw the derivatives on the graph you have been given, you will notice that the acceleration is π radians out of phase of the motion.

Answered by Johnny T. Physics tutor

1757 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

In terms of particles, explain how resistance arises in metal conductors and why does this resistance increases with temperature.


Describe how a capacitor works.


A car of mass 1500kg is travelling at 10 ms-1 along a horizontal road. A brake force of 3000N brings it to rest. Calculate the deceleration of the car and the distance travelled by the car whilst decelerating.


How do stars form?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences