A particle is moving in a straight line from A to B with constant acceleration 4m/s^2. The velocity of the particle at A is 3m/s in the direction AB. The velocity of the particle at B is 18m/s in the same direction/ Find the distance from A to B.

First draw a diagram to see the set-up.Then look at SUVAT to see which values we have been given. In this case it is a=4, u=3,v=18 and s=?. The only letter not used from SUVAT is the t so we use the formula without... v2=u2+2as. Fill in the numbers 182=32+2 x 4 x s324 = 9+ 8s. Rearranges = (324-9)/8 = 39.375 m

AK
Answered by Adam K. Further Mathematics tutor

3062 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


How would you differentiate x^x?


Find the coordinates of the stationary points on the curve y=x^5 -15x^3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning