Describe and explain the photoelectric effect in terms of photons interacting with the surface of a metal.

The photoelectric effect occurs when individual photons are incident on a clean metal surface. The photons are absorbed by electrons in the clean metal surface and they are released as photoelectrons. The interaction is one-to-one and is instantaneous. The energy of the photons must be greater than the work function of the clean metal surface in order for photoelectrons to be released. The work function is the minimum energy required to release photoelectrons from a clean metal surface. (Frequency greater than threshold frequency otherwise)This means that red light photons may be unable to release photoelectrons, but UV light photons can release photoelectrons. Einstein's theory indicates that the Kinetic Energy of the photoelectrons released is related only the energy of the incident photons and not related to the number of incident photons. The number of incident photons only affects the number of photoelectrons released.

AS
Answered by Arjun S. Physics tutor

7900 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2


What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


A particle of mass 5kg is moving in circular motion with a time period of 2 seconds. The radius of the circle is 10m. What is the centripetal force on the particle


State and derive Kepler's third law


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning