How do I find the half-life of radioactive isotope?

The half-life of a radioactive isotope is the time taken for half of the atoms in a given sample of the isotope to decay. Radioactivity is random and so, half-life is the average time taken for a large number of atoms. 

There are two ways to find the half-life, both come from the decay equation:   N = N0e^(-λt)      which is an exponential relationship*. 

Where N is the number of atoms of the isotope left at time t and Nis the number of atoms when t =0. λ is known as the decay constant and is the probability that an atom will decay per unit time. If you are given the decay constant you may find the half-life T1/2 by setting N = N0/2 and rearranging to find t = T1/2. Or if you are given N and Nyou may find λ and follow the previous steps.

*Make sure you familiar with exponentials and logs before attempting this topic

JS
Answered by Joe S. Physics tutor

17546 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A roller coaster has a loop, r = 20m, how fast should it travel so that riders don't fall out?


How to determine the total time of flight for a projectile launched at an angle theta to the horizontal with an initial speed u?


What is electromotive force (emf) and how can the emf of a battery be measured?


If a ball is launched at ground level at a velocity v and angle θ, find an expression for it's height at horizontal distance x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning