How do I find the half-life of radioactive isotope?

The half-life of a radioactive isotope is the time taken for half of the atoms in a given sample of the isotope to decay. Radioactivity is random and so, half-life is the average time taken for a large number of atoms. 

There are two ways to find the half-life, both come from the decay equation:   N = N0e^(-λt)      which is an exponential relationship*. 

Where N is the number of atoms of the isotope left at time t and Nis the number of atoms when t =0. λ is known as the decay constant and is the probability that an atom will decay per unit time. If you are given the decay constant you may find the half-life T1/2 by setting N = N0/2 and rearranging to find t = T1/2. Or if you are given N and Nyou may find λ and follow the previous steps.

*Make sure you familiar with exponentials and logs before attempting this topic

JS
Answered by Joe S. Physics tutor

17323 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Water flows through an electric shower at a rate of 6kg per minute. Assuming no heat is transferred to the surroundings, what power is required to heat the water by 20K as it flow through the shower?


What is the Photoelectric effect?


Name the four fundamental forces.


An electron of mass 9.11x10^(-31) is fired from an electron gun at 7x10^6 m/s. What size object will the electron need to interact with in order to diffract?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning