How do I find the half-life of radioactive isotope?

The half-life of a radioactive isotope is the time taken for half of the atoms in a given sample of the isotope to decay. Radioactivity is random and so, half-life is the average time taken for a large number of atoms. 

There are two ways to find the half-life, both come from the decay equation:   N = N0e^(-λt)      which is an exponential relationship*. 

Where N is the number of atoms of the isotope left at time t and Nis the number of atoms when t =0. λ is known as the decay constant and is the probability that an atom will decay per unit time. If you are given the decay constant you may find the half-life T1/2 by setting N = N0/2 and rearranging to find t = T1/2. Or if you are given N and Nyou may find λ and follow the previous steps.

*Make sure you familiar with exponentials and logs before attempting this topic

JS
Answered by Joe S. Physics tutor

16943 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


Two balls of mass 3kg and 7 kg respectively move towards one another with speeds 5ms^-1 and 2ms^-1 respectively on a smooth table. If they collide and join, what velocity do they move off with?


Why is the refractive index of water bigger than that of air?


Find, using integration, the work done in compressing a spring by a distance x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning