A)Write x^2 – 8x + 25 in the form (x – a)^ 2 + b. (B) Write down the coordinates of the turning point of the graph of y = x2 – 8x + 25. (C)Hence describe the single transformation which maps the graph of y = x2 onto the graph of y = x2 – 8x + 25.

This is a question about completing the square of a quadratic equation. This is used to find the minimum point on a parabolic graph. A) Step 1 - set up the '(x – a)2' term by dividing the coefficient of x by 2:=(x-4)2 Step 2 - take away the square of the 'a' term:=(x-4)2 -(-4)2+25Step 3 - Simplify. Remember that a negative number squared is positive (negative X negative = positive). But also remember the negative sign in front of the 4.=(x-4)2 -16+25=(x-4)2 +9B) The answer to this type of question is always (-a,b). Again remember that a negative X a negative = positive. Therefore the answer is (4,9)C) You know that the graph y=x2 has a minimum point of (0,0), so we have to work out how to get from (0,0) to (4,9). This is simply a translation with a vector (4,9). Remember the key words 'translation', 'rotation', and 'enlargement'. These are all different forms of transformations.

PP
Answered by Peter P. Maths tutor

8016 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do tree diagrams work? Consider: A bag contains 5 red counters and 3 blue counters. James draws a counter from the bag at random and keeps it. James then draws a second counter at random. What is the probability that James takes two red counters?


We have the following fractions: 6/16, 9/24, 12/32 and 15/35. Which fraction is not equivalent to 3/8?


How do you find the X and Y intercepts of an linear equation?


at a shop in the US tax is added onto the price of an item at the till. this shop adds 5.7% of the items value to the total cost. if you buy a ball priced as $15, how much will you have to pay ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences