A)Write x^2 – 8x + 25 in the form (x – a)^ 2 + b. (B) Write down the coordinates of the turning point of the graph of y = x2 – 8x + 25. (C)Hence describe the single transformation which maps the graph of y = x2 onto the graph of y = x2 – 8x + 25.

This is a question about completing the square of a quadratic equation. This is used to find the minimum point on a parabolic graph. A) Step 1 - set up the '(x – a)2' term by dividing the coefficient of x by 2:=(x-4)2 Step 2 - take away the square of the 'a' term:=(x-4)2 -(-4)2+25Step 3 - Simplify. Remember that a negative number squared is positive (negative X negative = positive). But also remember the negative sign in front of the 4.=(x-4)2 -16+25=(x-4)2 +9B) The answer to this type of question is always (-a,b). Again remember that a negative X a negative = positive. Therefore the answer is (4,9)C) You know that the graph y=x2 has a minimum point of (0,0), so we have to work out how to get from (0,0) to (4,9). This is simply a translation with a vector (4,9). Remember the key words 'translation', 'rotation', and 'enlargement'. These are all different forms of transformations.

Answered by Peter P. Maths tutor

7054 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(This was taken from a GCSE past paper)A bag of 24 spoons costs £19.95. A box of 18 forks costs £15.55. Bags and boxes cannot be split. Gregor decides to buy the same number of spoons as forks. He places an order to buy the smallest number of each


How do you find the volume of a conical frustum?


We have 2 spinners: spinner A and spinner B. Spinner A can land on 2, 3, 5 or 7. Spinner B can land on 2, 3, 4, 5 or 6. Spin both. Win if one spinner lands on odd and the other lands on even. Play game twice, what is the probability of winning both games?


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences