Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]

First find the general solution to the differential equation y'' + 4y' + 3y = 0 as an arbitrary number of the solution to this differential equation can be added to the solution of the differential equation in the question. Equations of this form have the solution y = Ae^(mx) (where A is an arbitrary constant) so y ' = my and y'' = (m^2)y. Cancelling y this gives m^2 + 4m + 3 = 0, solved by m = -3, -1. The solution of this is equation (the complementary function) is y = Ae^(-3x) + Be^(-x) [where A and B are arbitrary constants]Then find the particular integral, the solution to the differential equation in the question. This is found by trying a solution of the form of the right hand side of the equation, y = ce^(2x). This gives y' = 2y, y'' = 4y. Substituting y, y' and y'' in and cancelling y gives 15c = 6, so c = 0.4. The general solution is the sum of the particular integral and the complementary function, y = Ae^(-3x) + Be^(-x) + 0.4e^(2x)

Related Further Mathematics A Level answers

All answers ▸

Solve the inequality x^3 + x^2 > 6x


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences