A golf ball is hit at an angle θ=45° to the horizontal with an initial speed v0. A vertical wall of height h=10m lies a distance d=20m away. Determine the minimum initial speed v0 required for the ball to clear the wall. Air resistance is negligible.

(I have a picture of a full explanation saved on my computer and I can show this or recreate using the whiteboard during interview if required.)
Physics: Newton's 2nd Law, 'suvat' equations.
Setting up problem:
1.Sketch problem.
2.Draw free-body diagram for golf ball.
3.Draw coordinate system.
Key Idea: Deal with horizontal and vertical forces independently to simplify problem.
Newton 2 in horizontal direction leads to expression horizontal distance x = v0tcosθ.
Newton 2 + 'suvat' leads to expression vertical distance y = v0tsinθ - (1/2)gt2.
Combine to eliminate t and obtain expression y = xtanθ - gx2/2v02cos2θ.
For minimum clearance of wall path crosses top of wall i.e. point (x=d, y=h). Sub in values for d=20m, h=10m, θ=45°, g=9.8ms-2. Final answer: v0 = 20ms-1 (2 sig. fig.)

Answered by Physics tutor

3617 Views

See similar Physics Scottish Highers tutors

Related Physics Scottish Highers answers

All answers ▸

Calculate the gravitational force acting on the Moon, caused by the Earth, given that the masses of the Earth and the Moon are 6 x10^24 and 7.3 x10^22, respectively. The distance between the Earth and the Moon is 384 400 km.


Two cables hold a mass of 100kg, joining in the middle of the top of the mass. Two helicopters lift a cable each and hover so that the height of the mass is constant. Each cable makes an angle of 57° with the normal. Find the tension in each cable.


Explain the difference between elastic and inelastic collisions.


A tall 2 meter tall basketball player shoots for the net that stands 3 meters from the ground. If he throws he ball from head height at an angle of 60 degrees and the ball travels at 10 meters per second, how far away is the hoop?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning