Integrate the following with respect to x, f(x)=xsin(x)

f(x)= xsin(x) >>>>>>>>>>>>>>>>>> integral[ udv/dx ] dx= uv - integral[v* du/dx] dx
let x=u and sin(x)=dv/dx >>>>>>>>>>>>>>>>>> du/dx=1 , v= -cos(x)
Plugging in gives formula: integral[ xsin(x)] dx = (x)(-cos(x)) - integral[ -cos(x) ]dx
solving gives ............... = sin(x) - xcos(x) + C

JC
Answered by Jamie C. Maths tutor

3684 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point(s) on the curve 2xsin(x)


Use the addition formulas: sin(x+y)=sin(x)*cos(y)+sin(y)*cos(x), cos(x+y)=cos(x)*cos(y)-sin(x)*sin(y) to derive sin(2x), cos(2x), sin(x)+sin(y).


How would I differentiate y=2(e^x)sin(5x) ?


What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning