√5(√8 + √18) can be written in the form a√10 where a is an integer. Find the value of a.

We have:
√5(√8 + √18)
Now, multiply out the brackets (multiply everything inside the brackets by √5). This gives us
√40 + √90
We now need to simplify the SURDs. We know that we want the answer in the form a√10, so we will try to include √10 in both SURDs (and also to get them into a format where we can add them - both need to have the same SURD).
√40 + √90 = √(4x10) + √(9x10) = √4√10 + √9√10 = 2√10 + 3√10 = 5√10
Hence, a = 5.

Answered by Maths tutor

16074 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations: 2x - y = 7 and x^2 + y^2 = 34


How do surds relate to powers and roots?


If (2x+3)/(x-4)-(2x-8)/(2x+1)=1, what is x?


Factorise the quadratic equation: 3x^2+x-2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences