Functions f and g are such that f(x) = x^2, g(x) = x-3. Solve gf(x)=g^-1(x)

First, we substitute in our functions f and g. We can do this in two ways.1) Find g^-1:As g takes 3 from x, the inverse operation must add 3 to x. So g^-1(x) = x + 3Then our equation gf(x) = g^-1(x) becomes:g(x^2) = x + 3 --> x^2 - 3 = x + 3 --> x^2 - x - 6 = 0, so x = 3 or x = -22) Don't find g^-1:If we apply g to both sides, we get:g^2f(x) = gg^-1(x) --> x^2 - 6 = x, so x = 3 or x = -2
Because g is quite simple in this problem, finding g^-1 is easy, so we can do it either way. But if g was more complicated (g = x^3 - x^2 + 1, say) then finding g^-1 may not be possible, and we may have to do it either way. In maths we often find there are multiple ways of finding the right answer.

Answered by William C. Maths tutor

8479 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

All tickets to the movie theatres cost the same price. Jessica and Thomas pay £84 together. Jessica pays £38.5 for 11 tickets. How many does Thomas Buy?


Factorise the following equation: y = 2x^2 + 4x - 6


How do you calculate the hypotenuse of a right angle triangle if the two shorter sides are 6 and 8?


In an office there are twice as many females as males. 1/4 of females wear glasses. 3/8 of males wear glasses. 84 people in the office wear glasses. What is the total number of people in the office?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences