Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).

We are given that f(x) = 1/x - sqrt(x) + 3. Here, f(x) represents a function. A function is a relation or expression involving one or more variables. We are able to differentiate f(x) in order to find the gradient, f'(x), at a particular point on the graph. So the purpose of this question is to find the gradient of f(x) at x=1.
In order to differentiate quadratics, we use the typical formula where y=axb and dy/dx=abxb-1. With this information we are now able to differentiate f(x). To make f(x) simpler we write, f(x) = x-1 - x1/2 + 3. Using the formula for differentiation above, we deduce that f'(x) = -x-2 - (1/2)x-1/2. To conclude, we simply substitute x=1 into our formula for f'(x) and we obtain f'(1)= -3/2.

Answered by Maths tutor

7271 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don't understand how functions work. How do I decide if something is a function?


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


At t seconds, the temp. of the water is θ°C. The rate of increase of the temp. of the water at any time t is modelled by the D.E. dθ/dt=λ(120-θ), θ<=100 where λ is a pos. const. Given θ=20 at t=0, solve this D.E. to show that θ=120-100e^(-λt)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning