Let Curve C be f(x)=(1/3)(x^2)+8 and line L be y=3x+k where k is a positive constant. Given that L is tangent to C, find the value of k. (6 marks approx)

SO when we see the word tangent we should be thinking about rate of change. Recall that the line being a tangent means they meet and have the same derivative at this point OR we find k such that f(x)-y=0 has a double root. (We can prove that this is true!)So(1/3)x^2+8-k-3x=0 so we solve for k such that the discriminant is 0. that is 9-4(1/3)(8-k)=0 This implies k=8-27/4=5/4

GJ
Answered by Gurbir J. Further Mathematics tutor

7965 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


Find any stationary points in the function f(x) = 3x^2 + 2x


If z=4+i, what is 1/z? (in the form a+bi)


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning