Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.

f'(x)=lim(h->0) of [f(x+h)-f(x)]/h. In the case where f(x)=x^n, we have that f(x+h)-f(x)=h*nx^(n-1) + (h^2)*p(x) for a polynomial p(x), shown by binomially expanding f(x+h). Then dividing through by h and taking the limit gives f'(x)=nx^n-1.

TD
Answered by Tutor302361 D. Maths tutor

2594 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points


A car is travelling with a velocity of "0.5t^2+t+2" m/s at t=0 (where t is in seconds), find the acceleration of the car at a) t=0 b)t=2


Find the derivative for y=5x^3-2x^2+7x-15


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences