Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.

f'(x)=lim(h->0) of [f(x+h)-f(x)]/h. In the case where f(x)=x^n, we have that f(x+h)-f(x)=h*nx^(n-1) + (h^2)*p(x) for a polynomial p(x), shown by binomially expanding f(x+h). Then dividing through by h and taking the limit gives f'(x)=nx^n-1.

Answered by Tutor302361 D. Maths tutor

2555 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^(3x+)1 in the form 3^y giving y in the form of ax+b where a and b are constants.


How do I rationalise the denominator of a fraction which consists of surds?


A curve has equation y=x^2 + 2x +5. Find the coordinates of the point at which the gradient is equal to 1.


Calculate the indefinite integral of ln(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences