Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.

f'(x)=lim(h->0) of [f(x+h)-f(x)]/h. In the case where f(x)=x^n, we have that f(x+h)-f(x)=h*nx^(n-1) + (h^2)*p(x) for a polynomial p(x), shown by binomially expanding f(x+h). Then dividing through by h and taking the limit gives f'(x)=nx^n-1.

Answered by Tutor302361 D. Maths tutor

2559 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve, C has equation y = 2x^2 +5x +k. The minimum value of C is -3/4. Find the value of k.


Given y = 3x^(1/2) - 6x + 4, x > 0. 1) Find the integral of y with respect to x, simplifying each term. 2) Differentiate the equation for y with respect to x.


How do you integrate sin^2(3x)cos^3(3x) dx?


Integrate (12x^5 - 8x^3 + 3)dx giving the terms of the answer in the simplest terms


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences