How do I find the equation of a line connecting points a(p,q) and b(r,s)?

First we need to find the gradient of the line connecting points a and b:
gradient m = (change in y)/(change in x) = (q - s)/(p -r)

Now we use the following equation:

y - y1 = m(x - x1)

substituting suitable values for (x1, y1) (can be points a or b but we'll use point a this time) and m (calculated above):

Using point a:

y - q = [(q-s)/(p-r)](x - p)

and so the equation in the form y = f(x) is:
y = [(q-s)/(p-r)]x + (q-s)/(p-r) + q

CW
Answered by Chris W. Maths tutor

6048 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The work in an office takes 200 hours to complete every week. Each person in the office works 35 hours a week. What is the smallest number of people needed to complete the work?


Solve the following simultaneous equations: x^2 + y^2 = 5, y - 3x = 1.


Expand and simplify (6x+9)(4x+7)


Write 2x^(2) + 9x + 1 in the from a(x+m)^(2) + n, and hence solve 2x^(2) + 9x + 1= 0, leaving your answer in surd form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning