Solve the following simultaneous equations: 2x + 2y = 14; 4x - 2y = 10

By Elimination:
We can add the equations together because +2y and -2y will cancel out: 2x + 4x = 14 + 10
This gives 6x = 24, so x = 4
We can put x back into one of the simultaneous equations: 2(4) + 2y = 14
Therefore, 2y = 6 so y = 3
We can check our answers in the other equation: 4(4) - 2(3) = 10
By Substitution:
We can rearrange the first equation to put y on the left hand side of the equation: 2y = 14 - 2x, so: y = 7 - x
We can substitute this third equation into the second equation: 4x - 2(7 - x) = 10 and 4x - 14 - (-2x) = 10
By collecting like terms on each side:
6x = 24, therefore x = 4
We now substitute x = 4 into one of the first equations to get y = 3

Answered by Edward B. Maths tutor

3904 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I simplify this? (x-2)(x+3)


Find the equation of the straight line which passes through the point (0, 3) and is perpendicular to the straight line with equation y = 2x.


Solve the equation 4(3x-2)=2x-5


Expand and simplify (x+1)(2x+3).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences