Solve the inequality 6x - 7 + x^2 > 0

Firstly rearrange the quadratic such that the coefficient of x2 is positive (already done in this example) and the quadratic is in the form of ax2 +bx + c, then solve for x, like you would solve a regular quadratic equation.
x2 + 6x - 7 > 0, (x + 7)(x - 1) > 0
This gives you the roots of this quadratic aka where the graph intersects the x axis. This is important as this tells you which values of x satisfy the inequality (would be best explained by drawing a quadratic graph). In this situation it is when the graph is above the x axis, so therefore be before the lowest root and after the highest root.
x = -7, x = +1
Therefore, x < -7, x > 1

Related Maths A Level answers

All answers ▸

What is the chain rule, product rule and quotient rule and when do I use them?


When you integrate, why do you need to add a +C on the end?


If y = 1/(x^2) + 4x, find dy/dx


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences