Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1

a) Integrate the given expression using integration laws we have learnt to give [(x^4)/4 + (3(x^2))/2 + 2x ] and you do not need a +c constant as we have limits.b) Substitute the limits into the equation we calculated remembering to do the upper limit substitution minus the lower limit substitution to give: [(2^4)/4 + (3)(2^2)/2 + 2(2)] - [(1^4)/4 + (3)(1^2)/2 + 2(1)] which equals [16/4 + 6 + 4] - [1/4 + 3/2 + 2]= [14] - [1/4 + 6/4 + 8/4] =[56/4] - [15/4]= 41/4

Answered by Maths tutor

3517 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you differentiate and integrate 2x^3?


find dy/dx for the equation y = 6x ^(1/2)+x+3


How do I integrate terms with sin^2(x) and cos^2(x) in them? For example integrate (1+sin(x))^2 with respect to x


Given that y = 16x + x^-1, find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning