Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1

a) Integrate the given expression using integration laws we have learnt to give [(x^4)/4 + (3(x^2))/2 + 2x ] and you do not need a +c constant as we have limits.b) Substitute the limits into the equation we calculated remembering to do the upper limit substitution minus the lower limit substitution to give: [(2^4)/4 + (3)(2^2)/2 + 2(2)] - [(1^4)/4 + (3)(1^2)/2 + 2(1)] which equals [16/4 + 6 + 4] - [1/4 + 3/2 + 2]= [14] - [1/4 + 6/4 + 8/4] =[56/4] - [15/4]= 41/4

Answered by Maths tutor

3647 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The second and fifth terms of a geometric series are 750 and -6 respectively. Find: (1) the common ratio; (2) the first term of the series; (3) the sum to infinity of the series


Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points


write 2(sin^2(x)- cos^2(x)) + 6 sin(x) cos(x) in terms of cos(2x) and sin(2x)


Let y = x^x. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning