Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...

First step: n=1 we have 81 -1=7 which is divisible by 7. Assumption step: 8k-1 is divisible by 7. Induction step: Using the previous step we have that 8k-1=7x. So 8k = 7x+1. Therefore, 8k+1- 1=8(8k)-1=8(7x+1)-1 = 56x + 8 -1 = 56x+7 = 7(8x+1) which is divisible by 7. Hence, since it is true for n=1, n = k and for n=k+1 then it is true for all positive integers

MC
Answered by Mike C. Maths tutor

4982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is 7 to the power of 8? (


A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


How do i know where a stationary point is and what type of stationary point it is?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences