Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...

First step: n=1 we have 81 -1=7 which is divisible by 7. Assumption step: 8k-1 is divisible by 7. Induction step: Using the previous step we have that 8k-1=7x. So 8k = 7x+1. Therefore, 8k+1- 1=8(8k)-1=8(7x+1)-1 = 56x + 8 -1 = 56x+7 = 7(8x+1) which is divisible by 7. Hence, since it is true for n=1, n = k and for n=k+1 then it is true for all positive integers

Answered by Mike C. Maths tutor

4211 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the point of intersection of the lines y=2x-7 and 4y-2=3x


Find the positive value of x such that log (x) 64 = 2


Do the circles with equations x^2 -2x + y^2 - 2y=7 and x^2 -10x + y^2 -8y=-37 touch and if so, in what way (tangent to each other? two point of intersection?)


Why bother with learning calculus?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences