A curve has the equation y=x^2+4x+4 and a line has the equation y=2x+3. Show the line and curve have only one point of intersection and find its coordinate..

First set the equations equal to each other: x^2+4x+4 = 2x+3.Rearrange for x in form ax^2+bx+c : x^2+2x+1=0Factorise: (x+1)^2=0. Repeated root, hence only one intersection. x=-1. Using y=2x+3, y=1. So coordinate: (-1,1). Check answers by substituting values back into both equations. Note, I have chosen equations that can be easily factorised at every step so a graphical explanation could be easily conveyed.

EF
Answered by Ewan F. Maths tutor

4633 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

how do you find intersections between two graphical functions?


Factorise x^2+6x-27


Expand and simplify x(2x+1)(x-3)


The sides of an equilateral triangle are given by the expressions x+y, 2y-1 and 3y-2x+1. Find the values of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning